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This paper presents a procedure whereby three-dimensional inviscid flow through 
a highly loaded turbomachinery cascade of lifting lines can be treated by methods 
corresponding to classical aerodynamic theory. In contrast to earlier linearized 
(thin airfoil) three-dimensional theory, the present study allows analysis of the 
flow corresponding to the large turning and/or large pressure ratios induced by 
practical rotors or stators. For the sake of simplicity, the present paper is limited 
to incompressible flow through a highly loaded rectilinear cascade and to the 
design problem, i.e. given blade loading. Formulae are derived for both the 
mean and the three-dimensional components of the flow; in particular, the 
velocities a t  the blades induced by the trailing vorticity associated with non- 
uniform blade circulation are determined. 

1. Introduction 
The purpose of this paper is to introduce a method which allows the applica- 

tion of the ideas of classical aerodynamics (e.g. wing theory) to  three-dimensional 
inviscid flow through highly loaded turbomachinery cascades. In  order to keep 
the presentation of this new theory as brief and clear as possible, we restrict 
the present work to the case of incompressible flow through a highly loaded, 
isolated, rectilinear cascade, moving or stationary, with uniform inlet conditions, 
and assume that the absolute velocity far upstream is purely axial. The cascade 
of blades is assumed to be encased, for the purposes of the present treatment, in 
a duct of infinite length and width with finite height I (figure 1). 

The theory we propose here, as it has been developed so far, is limited to the 
‘design problem’, i.e. the blade loading is assumed given. 

The basic physical idea which we follow is that when the blade circulation is 
non-uniform along the span the vorticity trailing downstream of the blades 
should be thought of as being convected approximately by the mean flow, which 
includes the usually large swirl induced by the blade row itself. By ‘mean’ we 

t Visiting Professor, School of Engineering, Massachusetts Institute of Technology, 
1 9 74-75. 

46 F L M  74 



722 J .  E .  McCune and W .  R. Hawthorne 

indicate here an average of any quantity over y. This treatment of the convec- 
tion of the trailing vorticity is in contrast to the standard assumption, used in 
strictly linearized? theory, analogous to thin airfoil theory, which describes 
the trailing vorticity as being convected by the unperturbed flow, i.e. the flow 
specified far upstream of the blade row. The latter linearizing assumption has 
been used in all previous analyses which have applied classical aerodynamic 
theory to the problem of the three-dimensional flow through turbomachinery 
cascades. 

In  the simplest version of the present theory, the blades are represented by an 
infinite set, along y, of regularly spaced lines of bound vorticity, each aligned 
vertically in the z direction, perpendicular to the incoming flow in absolute 
co-ordinates, and each having circulation r(z) (figure 1). The blades have uni- 
form spacing s along y. In  the case of a ‘rotor’ the blades move in the y direction 
with speed U .  Thus, for an isolated rotor, i.e., for a situation in which we may, 
for example, neglect rotor-stator interaction, the flow field is actually a function 
of 

y1 = y -  U t ,  (1.1) 

i.e. it is steady in relative co-ordinates. 
If the vorticity trailing from the blades is approximated as being convected 

downstream by the mean flow, we shall find that we must correspondingly restrict 
the circulation on the blades to the form 

r ( z )  = T’+6r@), 6r = o(€), (1.2) 

i.e. &r/T’ < 1. Here F is a constant, and equal to the average value,$ over the 
span of the blade, of r: 

Thus, in the case of a rotor, for example, we limit ourselves to the situation of a 
cascade which is designed to do almost constant work. For a stator ( U  = 0) ,  
we limit ourselves to the case of almost uniform turning, in the rectilinear case; 
in the corresponding annular case one would have, in the mean, nearly free- 
vortex flow downstream of the blade row. Condition (1.2) represents the main 
restriction on the proposed new theory, i.e. &r/r must be a small parameter if 
the present theory is to apply. 

On the other hand, F can be a large constant, consistent with the large turning, 
andfor large changes in pressure across the blade row, associated with practical, 
highly loaded cascades. 

only with very small blade loading. 
t We refer here to the theories of this type as ‘strictly’ linear, since they are consistent 

$ This and - 
tanz2 =; dz G - r1s-u 

JL v- m 

are the only cases in the present paper where an overbar represents a spanwise average. 
In all other cases, we adopt the notation that a bar represents an average over ‘y’, i.e. 
an average over several blade passages. 
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FIGURE 1. Notation. 

The mean flow through the cascade, together with the three-dimensional 
perturbation of that flow, can be determined by the use of the above funda- 
mental ideas. More significantly, we expect that the induced velocities associated 
with the trailing vorticity will be given more accurately by this approach than 
by the earlier, strictly linear, three-dimensional theories. 

This paper is constructed as follows. In  the next section, a brief review of the 
previous applications of three-dimensional, inviscid, classical aerodynamic theory 
to the flow through cascades is given. 

In  $3, a general approach to the nonlinear analysis of the inviscid incompres- 
sible equations of motion for the flow through the cascade in a special case of 
uniform inIet conditions is sketched. At this point our basic approximations are 
introduced and the general approach simplified. These approximations imply, 
as intended, that the trailing vorticity is indeed convected, very nearly, by the 
mean downstream flow. It is further argued that these approximations imply 
that the absolute flow field is correspondingly of the form 

v = v + v, v = (u, v, u,) = O(s) ,  
- 

(1.3) 

where V is the absolute velocity and v its mean, usually O(1). On the other 
hand, as indicated in (1.3), v is the three-dimensional flow field superimposed 
on v and is ‘small’; i.e. lvl/lVl < I within the present theory. 

In  $4, equations for the mean flow v, with special emphasis on the down- 
stream flow, are derived using the actuator-disk approximation for simplicity. 
Nonlinear effects are included here. The mean downstream flow is matched with 
the mean upstream flow, through conditions imposed at  the blade row, thus 
determining 5 and related quantities completely. Of course, more accurate 
through-flow theories for the mean flow can be applied when appropriate. 

In  $ 5 ,  equations for the three-dimensional flow field v are derived, and v is 
completely determined by applying appropriate three-dimensional matching 
conditions, imposed by the blade row, between the upstream and downstream 
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flow. In  particular, the velocities induced by the wakes of trailing vorticity are 
determined explicitly at the blades. At this stage advantage is taken of the fact 
that the shape of the surfaces of trailing vorticity can be directly calculated for 
given blade loading. The wakes become extremely distorted far downstream of 
the rotor but have a very simple form near the blades. As one might expect, 
this simple form is essentially determined by the mean outlet angle of the flow 
from the blades. 

Finally, in $6, an argument is presented which supports the use of a Trefftz- 
plane analysis for this problem. This opens up the possibility of computing the 
induced velocities associated with the trailing vorticity by an alternative method. 
When this analysis is carried out the answer supports the results of 3 5. In  both 
$$4 and 5 it is shown that the three-dimensional effects represented by the 
induced velocities are very strongly affected by the fact that the wakes leave 
the blades at very nearly the mean outlet angle from the blade row. 

It has been shown (Morton 1974) that the extension of the present method to 
three-dimensional compressible flow through rectilinear cascades leads to similar 
results, with the addition of the expected propagating acoustic modes. Further, 
Cheng (1975) has successfully applied the new method to three-dimensional flow 
in annular cascades, for the incompressible case. 

2. Earlier linearized theories: a review 
The attempt to extend the analytical approach of classical aerodynamic 

theory to three-dimensional compressible flow through axial compressor blade 
rows, especially transonic rotors, began some time ago. One of the earliest 
attempts of this kind was that of McCune (1958a);  this work led to a theory 
(McCune 1958b, c )  valid for non-lifting rotors operating in the subsonic, tran- 
sonic and supersonic regimes. This three-dimensional theory, as developed at 
that time, was a small perturbation analysis with two associated assumptions: 
first, it was assumed that the thickness problem could be treated separately from 
the lifting problem; and second, it was assumed that the blades were thin, 
thereby inducing only weak disturbances of the incoming flow. 

Apart from the primary aim of obtaining a self-consistent theory of the three- 
dimensional flow through an annular cascade, a fundamental goal of the ap- 
proach at  that time was to establish to what extent two-dimensional cascade 
analysis (strip theory) could be derived from three-dimensional theory, thus 
attempting to establish the regimes of validity of applying two-dimensional 
cascade data, then in wide use, to the design of three-dimensional rotors and 
stators. It was found that there was no difficulty in justifying strip theory (and 
hence, presumably, the use of the corresponding cascade data) in the purely 
subsonic and supersonic cases. On the other hand, in the transonic regime, no 
relation could be established between two-dimensional cascade results and three- 
dimensional analysis. This fact left an obvious dilemma for all involved in this 
complex field of study. 

It was not until 1967 that a corresponding three-dimensional study of a lifting 
rotor was published (Okurounmu 1967; Okurounmu & McCune 1970). In  this 
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theory the rotor was represented by B lines of bound vorticity of given strength 
r(r) along the span, rotating at speed o in an annular duct of infinite length. 
Again, the analysis was a strictly small perturbation theory, in the sense that 
it was explicitly assumed that the blade loading itself was ‘small’ (F lews  < 1, 
where V-, is the inlet velocity, which is assumed to be purely axial, and uniform, 
while s is the blade-to-blade spacing). Thus, in this earlier theory, only slight 
turning of the flow and low pressure ratios could be analysed. However, it was 
once more found that the transonic case did not correspond to two-dimensional 
cascade theory (except for I’ = constant) and that there were in general very 
important differences between the predictions of the two approaches under 
comparable loading. 

One of the features of the lifting theory was the inclusion of the wakes of 
trailing vorticity emanating from each blade, and the development of the 
ability to predict the velocity induced by this vorticity, at  the blades. However, 
i t  was again assumed that the trailing vorticity was convected by the unper- 
turbed flow, following the technique introduced by Reissner (1937). 

A review of the three-dimensional strictly linear theory available in 1970 was 
presented by McCune & Okurounma (1974). It was pointed out by them that 
the tangential mean of the three-dimensional effects described in the existing 
theories corresponded to linearized axisymmetric through-flow analysis, with 
three-dimensional fluctuations superimposed,.and it was suggested that this fact 
might lead to a way to relax some of the small perturbation assumptions. The 
present paper is to a certain extent a development of that suggestion. 

The linearized analysis was also extended to second order in perturbation 
quantities in order to compute the ‘losses’ (Okurounmu & McCune 1970). 
These losses included those due to the wakes of shed vorticity (analogous to 
induced drag in wing theory) plus, in the transonic case, those due to the wave 
energy radiated away by the acoustic modes excited in that case. While the 
losses were small, for the linearized study, they scaled with r, which indicated 
that they could become important for highly loaded- blade rows. 

The work on the lifting problem up to this point was limited to the ‘design 
problem’; i.e. given the loading, find the blade shape, induced angles, etc. To 
overcome this limitation, a Prandtl-type lifting-line theory was developed 
(McCune & Dharwadkar 1972) for subsonic lifting rotors, allowing treatment of 
both the ‘design ’ and ‘off-design ’ problems. One of the important conclusions 
of that study is that strong deviations of the flow angles develop near the hub 
and tip sections whenever r ( r )  is non-uniform along the span. It was also proved 
in that paper that no solution of the lifting problem is possible unless dl?/dr = 0 
at the hub and tip. This result had been pointed out earlier (Falc2o 1970). 

A lifting-surface theory of axial compressor blade rows was developed by 
Namba (1974), who went on to find a method of solving both the design and off- 
design problems, even in the transonic regime. He concluded, in agreement 
with earlier studies, that two-dimensional cascade analysis fails in the transonic 
regime, although it gives acceptable results in the subsonic and supersonic 
cases. Namba’s study is linearized with respect to the far upstream flow. 

Okurounmu & McCune (1971, 1P74a, b)  also developed a linearized lifting- 
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surface theory for an axial-flow compressor and demonstrated the wide varia- 
tion in blade shape required for given loading, showing that completely different 
blade shapes are required, in the transonic case, depending on whether or not 
d r l d r  = 0. Their study is limited to the design problem. 

As already emphasized, the above analyses allow only weak disturbance of 
the conditions specified far upstream, a fact which has restricted their usefulness 
in practical compressor design. The present paper is offered as a possible means 
of relaxing this limitation. 

3. General approach and basic approximations 
In  this section we apply our proposed new method to the study of the three- 

dimensional flow through an isolated blade row in an infinite rectilinear duct, 
using the assumptions described in the introduction. 

It is well known, for the rectilinear geometry of figure I ,  that the circulation 
blade is I' = A@, 

where A% is the tangential average of the change across the rotor in the y 
component of the absolute velocity [see footnote under (1.2)]. 

= E [ $ ( x ,  z)] and hence, for our case, % = 0 
upstream of the blade row. Thus we also have l? = I'[$(x,z)]. Here, $(x , z )  is 
the stream function of the mean flow: 

It is also well known that 

5 = a$-/az, V,  = -a$/ax, (3.2) 

where we have chosen Cartesian co-ordinates (x, y ,  z ) ,  with x the axial direction 
and z the spanwise (figure 1). 

If the blade row is isolated, i.e. no significant interference is present between 
rotor, stator and/or guide vanes, then there is a co-ordinate system in which 
the flow is steady [see (1.1)]. For an isolated rotor, as we have stated, the flow is 
steady in the relative system with the result that a/at = - U a/ay in absolute co- 
ordinates. Using this result in the equations of motion in the absolute system, 
one finds that the equations of motion reduce to 

W x 8  = V ( p / p + & V 2 - U ~ + & U 2 )  = 0 (3.3) 

both upstream and downstream of the rotor, where the last equality follows 
from Euler's turbine equation for incompressible flow and the assumed uniform 
inlet conditions, and where 8 = curl V. Here V is the absolute velocity, already 
defined, while W is the relative velocity W = V - Uj (figure 1)  in the case of a 
moving blade row. 

For the incompressible case, we have simply 

divV = divW = 0, divv = 0. (3.41, (3.5) 

Of course, (3.5) is automatically satisfied by (3.2). 
For uniform upstream conditions, the solution of (3.3) in the upstream flow 

is simply 8 = 0, and we may determine, with appropriate boundary conditions, 
the form of the upstream flow by standard methods corresponding t o  potential- 
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flow theory. However, the final determination of the upstream flow depends on 
matching it in some fashion with the downstream flow, through conditions 
imposed by the rotor. The downstream flow is considerably more complicated 
than the upstream flow, because of the vorticity trailing behind the blades. As 
already indicated, it is the method by which this trailing vorticity is treated 
which determines whether we must limit ourselves strictly to small perturbations 
of the incoming flow or whether large turning can be included in the theory. 

The general solution of (3.3) is simply 

sz = AW, (3.6) 

where 2 is any scalar function. Imposing (3.4) on (3.6), we are led, however, to 
a condition on 2, namely W .  VR = 0. Now, since div W = 0, we may describe 
W quite generally by W = V a  x Vp, where a and /3 are scalar functions of 
(x, y, 2). As usual, the intersections of the surfaces a = constant andp = constant 
are simply the streamlines of W. Since we can describe W in this form, it is 
apparent that  W. VA = 0 is automaticalIy satisfied if 

R = A(a,/3). (3.7) 

The physical meaning of (3.6) is that the downstream vorticity is oriented in 
the direction of and is convected along streamlines associated with W, the 
exact relative velocity; also A is constant along a streamline in view of (3.7). 

Exact use of the general theory described &bove will not be attempted here. 
Rather, a t  this point we suggest approximations appropriate to our present 
purpose. For certain cases the vorticity can be described as being convected 
approximately by the mean relative flow w, rather than by W itself, as in (3.6).  
For this to be true we must expect V to be made up of a zeroth-order mean flow 

plus 'small' [O(e)] three-dimensional perturbations. Thus [to repeat (1.3)], we 
must have 

v = v +v ,  v = O ( € ) ,  

= B(Z, z )  + v(x, y, x ) .  (3.8) 

This condition requires also that the trailing vorticity be 'small', O(e); that is, 
condition (1.2) must apply, and we have, correspondingly, the restriction 

ry$) = o(+ (3.9) 

Here the prime indicates a derivative with respect to the argument shown; as 
usual, the trailing vorticity is proportional to I". On the other hand, there is 
no restriction on the magnitude of r, and therefore the new theory holds, when 
so required, for large deflexion and large pressure changes across the blade row. 
For our present purposes, we simply require e, sr'(?,k)/r < I .  

The assumptions introduced above allow us to simplify (3.6), and its conse- 
quence W .  PA = 0, as follows: 

s2 = AW+O(e2), W . V A  A 0, (3.10), (3.11) 

where now is the mean relative velocity. Thus, as desired, (3.10) [see also 
(3.14)] implies the approximate convection of the vorticity by the mean relative 
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flow. Further, 
since d i v m  = 0 
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can be described in a simpler way than can W itself; namely, 

w = V a x V $ ,  (3.12) 

where now $(x, z )  is the stream function for the mean flow [see (3.2)]. Moreover, 
without loss of generality we may define 

a - y - f ( x , z ) .  (3.13) 

The x and z components of (3.12), with agiven by (3.13), simply reproduce (3.2). 
We show in 5 5 that  the function f (x, z )  is determined from the y component of 
(3.12), for given blade loading, and a becomes a known quantity. Finally, (3.7) 
is replaced by 

= h(a, $1, (3.14) 

which automatically satisfies (3.11) in view of (3.12). The stream function 
$(x,z) will be determined by the solution of the equations of the mean flow; 
these equations will be developed in 5 4. h in (3.14) is constant along mean stream- 
lines $ = constant. 

The vorticity in the downstream flow is that shed from the blades and is 
necessarily zero between the sheets of concentrated trailing vorticity. Hence the 
form of h(a, $) can be expected to be 

where 

n=-m 
m 

S &(a-ns) 
n = - w  

(3.15) 

is a periodic delta function with the argument shown. Inserting (3.15) in (3.10) 
and averaging over y (or a) leads to the equation for the mean downstream flow: 

C2 = ( F ( $ ) / s ) W .  (3.16) 

The x and z components of (3.16) can be used to show that 

F($)  = -F'($) (3.17) 

and the y component of (3.16), with (3.17), becomes the expected 'Beltrami' 
equation for the mean downstream flow. This equation thus yields the equation 
for $(x,z) ,  which can be solved for the mean downstream flow, given r($) or 

The wakes of shed vorticity lie in the surfaces 01 = 0, 5 s, 5 28, k 3s, ..., 
QX, 2). 

where a is determined in 55. 

4. The mean flow 

effects, the upstream flow is potential, 
Because of the assumed uniform inlet conditions, and our neglect of viscous 

V" = v p ,  (4.1) 

and with (3.4) this yields V"u = 0. (4.2) 
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This equation, of course, does not imply that the perturbations of the incoming 
flow are small. The boundary conditions are 

W,= V , =  0 at z = 0,l  (allx) (4.3) 

and the corresponding solution of (4.2) is standard: 

c o r n  

qP = P , x +  C C AEmexp (A,,%) cos (nnzll) exp (2nimy/s), (4.4) 
m= - c o n = O  

where the real part is implied, and 

As previously stated, 7; = 0 in this case, and (3.1) is accordingly simplified. 
The m = 0 component of 4" (or V") automatically gives the mean flow vu 

in the upstream region; we shall use this result, matched across the blade row 
with vd (determined below),? to obtain the coefficients Axo, and the corres- 
ponding Azo. The principal subject of the remainder of this section will be the 
determination of v d ,  which includes the effects of the vorticity shed into the 
region downstream of the blade row. 

The components of q5u [equation (4.4)] with m $: 0 represent the three- 
dimensional perturbations of the mean flow in the upstream region; these will 
be matched in $ 5  with the corresponding perturbation results for the down- 
stream flow, thus determining the three-dimensional perturbations, both up- 
stream and downstream, and enabling us to compute the induced velocities a t  
the lifting lines representing the blades. 

Using (3.2) and (3.1), together with the fact that v$ = p$($) = r($)/.s, for 
uniform axial inlet conditions, we find 

where we have also used the definition of W given above (3.4). An exact solution 
of this equation for I?' = constant has been worked out in detail by Oates 
(1971), and pointed out much earlier by Bragg & Hawthorne (1950). However, 
FalcLo's remark (1970) and the proof given by McCune & Dharwadkar (1972) 
that I?' must equal zero at z = 0,l lead us to reject this solution for the purposes 
of the present study. Indeed, if we do adopt Oates' tempting model, we later 
find, in studying the three-dimensional effects, infinite induced velocities at  the 
ends of the blades; cf. Thwaites (1960, p. 277) for an analogy in classical wing 
theory. 

Accordingly, we choose an alternative approach, suggested by the approxi- 
mation (1.2) - or equivalently (3.9) - in which we make use of the fact that 

- 

(4.7) 
r i  V ;  = ;+,Sr($). 

t We use the superscripts u and d to indicate upstream and downstream quantities, 
respectively. However, we drop the superscripts whenever they clearly are not needed. 
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It is well known (and will also be shown explicitly below) that, when (4.7) holds, 
it is also true, for incompressible flow, that $a = V-,z+0(6r), where VL, is, 
as before, the far-upstream (purely axial) absolute velocity. In  that case we can 

(4.8) 
i a m  write 

ryk) = -- +o(sr)z Em dz 

and equivalently sr(p) = 6r(z) + o(sr)z. (4.9) 

Then (4.6) becomes, omitting terms of order e2, 

(4.10) 

Consistent with our requirement that r' = 0 at z = 0, I ,  we introduce the 
expansion (recall that 6r is specified) 

(4.11) 

whereupon $ in (4.10) has the solution 

Of course, the rn are automatically 0(6r), and it will turn out, upon our carrying 
out the matching across the blade row, that the A:o are also O(6r). Thus @ is 
in fact of the form stated above (4.8). 

For the mean flow, the most useful form of the matching conditions across the 
blade row are as follows. 
(a) Continuity of mass across the blade row, namely 

or (4.13) 

( b )  Because there is no spanwise force on the blades, the jump across the blade 
row of the tangential mean of the spanwise component of the absolute velocity 
is zero; hence 

(4.14) 
az x=,,- 8% 

Requirements ( b )  and (a)  lead immediately to the results that 

AE0= -Ad no 

and - 

(4.15) 

(A& remains undetermined, but is not required in 8.  or in any other physical 
quantity.) 
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Notice that these results imply that 

and hence ~ ( o o )  - V-, = 2[T90) - v_,] = tan cc2[(T' - r ) / s ] .  (4.17) 

Note further, from (4.13) and (4.14), that the jump across the blade row of the 
tangential mean of the absolute velocity is just 

(4.18) 

5. The perturbation flow: wakes and induced velocities 
In  view of (3.6) or (3.10), we write 

V = V + + A = J + v .  (5.1) 

We already know from 5 4 that A = 0 upstream of the blade row and, in fact, the 
perturbation part of the upstream flow is given directly by the rn =k 0 terms in 
(4.4), provided we are able to determine the coefficients Our task then is 
to obtain A and + in the downstream flow, separate out the mean parts (which 
are already known from the previous section), and develop an expression for 
vd. Finally, with appropriate matching of the perturbation terms across the 
blade row, the entire three-dimensional flow field satisfying the restrictions of 
the present treatment will be determined (for a given loading). 

From (3.10), (3.12), (3.15) and (3.17) we have immediately 

where 

W 

curlA = V r  x V[ H(a-ns ) ]  
n = - w  

= vr x V H , ( ~ ) ,  
OD z H ( a  - ns )  

n=-w 

is a repeated Heaviside step function with positive unit steps at 

a = 0, t- s, If: 29, ... 
(the step a t  a = 0 is from - to + 4). Equation (5.2) follows from the fact that 
the periodic delta function appearing in &a, @) is the derivative with respect to 

Hn(a) = H(a-ns )  
a of m 

n=-m 
(Lighthill 1958). Thus 

00 dHn VHn(a)  = - V a  = V a  z 6(a - n s )  
da n=--m 

and similarly vr = (arp@)v@. 
Equation (5.2) has the immediate integrals 

A, = - H n ( a ) V r ,  A, = FVHn(a), (5.3) 
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the difference between the two being a curl-free vector. Hn(a) has the disadvantage 
of increasing without bound (to +a as a+ +oo and to -a as a+ -m), i.e. 
i t  is secular. Despite this, we choose 

(5.4) 
and in order to have a physically acceptable V in (5.1), we include in q5 a term 
which removes the secularity due to A. Thus we write 

(5.5) 

A = A, = - Hn(a) Vr, 

4 = 91 + #w, 9” = r($) ( 4 s  - a,, 
whence 

Notice that rVa is independent of y, while the term in brackets is the periodic 
‘saw-tooth’ function, with zero average over y (or a). 

We are interested here in only the y-dependent part of V, i.e. v. Thus we define 

4 = 41-51 (5.7) 
and subtract the mean of (5.6) from (5.6) itself, leaving 

v = v4 + vr(a,/s), 

 an/^ 5 (E /S  - 4) - H,(a). (5.8) 

Note that 1 a3 v(?) =F[i-s n = - w  c S(a-ns) . (5.9) 

Finally, using div v = 0, we obtain an equation for 6 which can be solved for 

v24 = - vr . vanis - v2r &,is. (5.10) given loading : 

Note the entire right-hand side of (5.10) is O(E)  and thus 6 is also O(s), as required. 
Before proceeding with the approximate solution of (5.10), we must determine 

a(x, y, z ) ,  orf(x, z ) ,  since this quantity will appear on both sides of the equation 
for 4. To accomplish this we recall that the y component of (3.12) determines 
f(x, z )  for given loading. In  fact, with the help of (3.2) we have simply 

(5.11) 

This equation can be integrated immediately by the method of characteristics, 
where here the characteristics are simply the streamlines of the mean flow, i.e. 
lines along which @ = constant. Therefore, if T is the time taken for a fluid 
particle to drift along a streamline from x = 0,  

f = [F/s + 8r($)/s - u] 7. (5.12) 

The most useful form of the result of the integration? can be written as 

af F/s-tr 
ax v-, 
-=- 

f The drift time T d x / q ,  where va is given by (4.16). We have used the condition s,” 
f = 0 at x = 0, which follows from the definition (3.13) of u. 
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nnz0 
1 

1)sin- +O(6r)2, (5.14) 

where zo($) is the value of z at which any line $ = constant crosses the plane 
x = 0. Since the surfaces a = constant = y - f (x, z )  are those in which the trailing 
vortices lie, we see immediately that the dominant term in (5.13) implies that 
the vortices leave the blades at essentially the spanwise-averaged outlet angle 
E2. In  fact, the leading term in (5.13) is just tanZ2. There is, however, some small 
curvature. More important, although af/az is small in 6r, it contains a secular 
term in x, which implies that the wakes became highly distorted far downstream 
from the blade row. (Note, however, that a f /az = 0 a t  z = 0,l for all x.) 

While this wake behaviour is quite interesting, and may have important 
implications far from the blade row, it turns out to be of little consequence near 
the blade row (see also 5 6), which is our main concern in this paper. We therefore 
leave the question of the effects of the distortion of the wakes to future study. 

To determine the induced velocities at the blades (or lifting lines) we must 
solve (5.10) in the neighbourhood of x = 0. This means that we can ignore (in this 
region) the effect of the small secular term introduced by a f /az. Moreover, con- 
sistent with our treatment of the mean flow, we write I’ in the form [cf. (4.11)] 

n7rz m 

r = F +  x r ,cOs---+o(sr)2 
n=l 1 

and insert this in the right-hand side of (5.10). Then 

(5.15) 

( 5 . 1 6 ~ )  

(5.16b) 

and the right-hand side of (5.10) simplifies greatly in the approximation (5.15), 
a t  least for small to moderate x (up to a few times I ) .  In  this region, the term 
in V r  in (5.10) drops out altogether (the term Vr. Va is 0(61’)2 for moderate x). 
Similar simplifications occur on the left-hand side of (5.10) when one keeps in 
mind the fact that 6 is itself O(6r). 

We use the Fourier expansion of the saw-tooth function a&, namely 

where in the last expression the prime on the sum means ‘omit m = O ’ ,  and the 
real part is implied. This suggests that we seek a solution of (5.10) for small 

6 = x’ R,(z) exp (27rimals) + 6, (5.18) 
X I 1  of the form W 

m = - w  
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where again the real part is implied and the prime means ‘omit rn = O ’ ,  and we 
define 6 by 

~ 2 6  = 0, a$/laz = o a t  z = 0 , 1 .  (5.19) 

$ will be of exactly the same form as 9” in (4.4) (with m = 0 omitted), except 
that there will be a minus sign in the argument of the exponential, and of course 
the coefficients will be different. 

In  view of (5.18), we have 

2nim aa W 

0.1 = m=--00 C’ [ R ~ ( ~ ) + a R ~ ~ ] e r p ( 2 n i r n a / s ) / ~ , ~ + ~ l  0, , (5 .20)  

in which the second term in the brackets vanishes because 

rwazi0, ,  = - r v i a . ~ ~  = 0 

[see (5.14)]. Since we also require [a$/az],,, = 0 from (5.19) we obtain the following 
boundary conditions for the Rm’s: 

for each m .  

(5 .21)  

Inserting (5.18), (5.19) and (5.15) in (5.10), we obtain in the usual way for 

(5 .22)  

which together with (5 .21)  can be solved by the method of variation of parameters. 

xm = 27rimRm (5 .23)  
It is convenient to introduce 

and S ’ E S  [ I +  (F$-32]-4 - = SCOSE2,  (5.24) 

whereupon (5.22) reduces to  

xk- ( 2 7 r r m / S ’ ) 2 X m  = rn(2). (5 .25)  

Upon comparing (5 .25)  and (6.16), we see that the xm’s used in this section and 
the $m’s appearing in the Trefftz-plane calculation ( 5  6) are related simply by 

&(z) = (‘ls’) Xm. (5 .26)  

The solution of (5 .25)  is recalling that x& ( y )  = 0 and I” ( y )  = 01 

I 
(cosh [ 8.rrm ( I -  z ) ]  1: I?’ sinh ( sI 27rm t )  dt 

xm = sinh (27rmIls’) S 

27rm - cosh ( sI z )  1; r‘ sinh [ (1  - t ) ]  dt] ,  (5 .27 )  

which can be verified readily by direct substitution in (5 .25) .  
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We may now collect our results for the downstream flow field and apply the 
appropriate matching conditions across the blade row (we recall that the mean 
flow has already been matched in $4).  Thus 

vd = V + v d  = P+v$+ (an/s)vr, (5.28) 

where 6 = (2nim)-l xm exp (2nimals) + 6 (5.29) 

(5.30) 4 = 2' c A~,exp(-hnm~)cos-exp(2nimy/s).  and 

Once again, the A,  satisfy (4.5). 

m 

m = - w  

nnz 
1 

m m  

m = - w n = 0  

The complete matching is accomplished by requiring 

(5.31) 

(5.32) 

m 

AV, = V$2=0+ - V&.=o- = - 1 + C' exp (2nimyls) ) . 

Av = ~dl,,~+ - W~I,,~- = - C' exp (27rimy/s), 

where the sum in (5.33) [and also in (5.34) and (5.17)] converges only in the 
sense of 'generalized functions', i.e. it  is the Fourier representation of the re- 
quired periodic delta function. The condition (5.33), of course, represents the 
jump in V,  imposed by the bound vortex lines at  the blade row. Conditions (5.32) 
and (5.34) together imply Aw = 0. 

For convenience in carrying out the matching, we introduce the Fourier 
expansion 

(5.33) r (  S m = - w  
and 

With (4.18) in mind, this becomes 

(5.34) 
r m  

S m = - w  

(5.35) 
nnz rn 1 

x m ( z )  = = X , ( Z )  = C hnmcos- 1 
n=O 

with the usual inverse formula for the coefficients h,,, PL 2 1.  We note, from (5.22) 
or (5.25), that the h,, are pure imaginary (each x,(z) is real) and, moreover, that 

Finally, in actually carrying out the calculations required in (5.32) and (5.34), 
we again make use of the approximation (4.9), expressed explicitly in the form 
(5.15). The result determines the remaining unknown coefficients, 

(5.36) 

(5.37) 

and thereby the entire upstream and downstream flow field, described by (5.28)- 
(5.30) and (4.4) [see also (4.12) and (4.15)]. Notice that the A g  are particularly 
simple, since hom = 0 and r0 = f .  
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The induced velocities at the lifting lines ( O , O , z )  can now be computed, 
yielding 

(5.38) 

is given by (4.16), while (u) is defined in the same way as (v), and purely 
imaginary terms have been omitted. Since the induced velocity perpendicular 
to the mean outlet angle is (vi) = -(u)sinE2+(v) cosEi2, equations (5.38) en- 
able us to  compute the velocity normal to the outlet flow at each lifting line: 

1 F C O S ~ E ~  r-F (cosz E2 + sin2E2) -I- 2: +-- 231 (4 (cos2 E2 + sin2 E2) 
2 (  s’ Sf m = l  

(Vi) = - +- 

(5.39) 

where we have used (5.26). The first term in (5.39) is due to the bound vortices 
and would not normally be included in a calculation of the ‘ downwash velocity’. 
The results of this section are verified in 8 6, using a Trefftz-plane approach. 

Since the requirement 8l?/F << 1 can be satisfied for larger 8r’s (and hence 
larger dr /dr )  as F is increased, the induced velocity due to the shed vorticity 
[the third term in (5.39)] can increase significantly with the loading p. The effect 
is zero, however, if l? = F = constant. Numerical calculations of the associated 
deviation angles are deferred here, as a practical matter, for the annular case. 
Useful examples have been worked out numerically for that case by Cheng 
(1975), showing that three-dimensional (blade-to-blade) effects are indeed signi- 
ficant, especially for moderate numbers of blades (10-20, say), and especially 
near the hub and tip regions of the blading. 

6. Trefftz-plane approximation and its justification 
In  the earlier sections of this paper the suggestion was made that a useful 

approximation to the flow downstream of a blade row can be obtained by des- 
cribing the trailing vorticity as being convected by the tangential mean of the 
actual flow field. When the strength of the trailing vorticity is weak, O(s), this 
leads further to the result that the blade-to-blade variations are also O(a), 
while the mean flow is O( 1) ( 3  4). In  addition, this model yields the rather satis- 
factory result that tbe trailing vorticity leaves the blades at  approximately the 
mean outlet angle, twisting up upon itself ($  5) only much later, owing to secular 
terms which are strictly O(s2). Thus a principal feature of the theory is that the 
nature of the velocities induced at the blades by the trailing vorticity is asso- 
ciated with the wakes leaving the blades a t  this outlet angle, and the twisting 
up of the wakes has a negligible effect on the velocities induced at the blades. 

However, as can be seen from $4, the mean flow itself can, if we wish, be 
further separated into an irrotational part and a rotational part, which is, in 
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FIGURE 2. (a), ( b )  Notation used in Trefftz-plane analysis. 
( c )  Mean velocities induced by shed and bound vortices. 

fact, O ( E ) .  A division of the flow in this manner is more in line with the separation 
of flow components suggested by Hawthorne (1967) for problems involving 
“small shear, large disturbance”. In  this categorization of flow, the primary 
flow turns out to be purely irrotational and convects the vortex filaments, which 
in turn induce the perturbation velocities in which we are interested. 

When this picture is adopted, in which all terms 0 ( e 2 )  are consistently neglected, 
the convecting flow, which in fact is two-dimensional, does not twist up [the 
wakes do not distort to O(E) ]  and, as a result, a Trefftz-plane analysis becomes 
justified. Here, the flow far downstream is pictured as being the result of con- 
vection of the wakes along surfaces a t  an angle E2. 

The notation for the corresponding Trefftz-plane is shown in figures 2 (a)  and 
( b ) .  As the Trefftz plane is a t  ‘infinity’ far downstream, derivatives of the velo- 
cities in the x’ direction vanish, so that the continuity equation becomes 

avipyi  + awpz = o (6.1) 

and we may introduce a stream function $(y’, z ) ,  where 

47 



738 J .  E.  McCune and W.  R. Hawthorne 

Here vf and w are the velocities relative to the blades induced by the shed vortex 
sheets a distance s‘ = s COB z, apart, where s is the blade spacing, and the orien- 
tation of (v’, y’) relative to (v, y), etc., as used in $ 5 ,  is illustrated in figure 2. 
Using (6.2) we may write the vorticity as 

On writing the delta functions representing the vortex sheets in series form (cf. 
Q 5) we obtain 

(6.4) 
m 

$u.u. + $zz = $ (1 + 2 
m = l  

The solution may be obtained by writing 

m 

m= 0 
$ = $m(z) cosrn2ryf/sf 

with boundary conditions qkrn(O) = ?,hm(1) = 0,  giving w = 0 at the walls, z = 0 
and 1. For m = 0 

which satisfies the boundary conditions. For m =t= 0 

$; - (m2m/sf)2 ~ n L  = 21”/sf, (6.7) 

solutions of which may be obtained, as before, by the method of variation of 
parameters. At y’ = 0 we obtain 

m 

vf(m, 034 = $z(o, 4 = z $A 
m=O 

To this we must add the primary flow, which can be regarwd as the sum of the 
upstream flow, the blade speed and the contributions from the bound vortices. 
Now bound vortices of strength r(z) which vary periodically in the z direction 
induce at infinity a velocity f/s in the y direction (see figure 2c), because the 
effect of the periodically variable component averages out. Figure 2 (c)  shows 
the mean velocities produced by the bound and shed vortices (the term m = 0). 
Resolving these in the y direction we obtain 

- f r-f v =-+- C O S ~ ,  = r/s, 
urn s SCOSZ, 

which agrees with the result obtained from consideration of the local circulation 
about each blade in the cascade. 
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In the x direction we obtain 

Em - v_, = (T - r) +tan z2, 

which is the change in axial velocity determined from the actuator-disk solution 
(4.17). 

The velocities due to the vortices at the blade row are half those obtained in 
the Trefftz plane, and, specifically, the upwash is given by 

The first two terms are obtained from actuator-disk theory. The third term is 
precisely the same as the term obtained in (5.39). 
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